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Since the accuracy of mean velocities and Reynolds stresses measured with inclined 
hot wires depends on the accurate knowledge of the hot-wire cooling law, each hot wire 
used in the boundary-layer experiment of Muller (1982, hereinafter referred to as I) 
had to be calibrated individually with respect to the magnitude and direction of the 
flow vector. In  the present paper details of the calibration procedure and an example 
of calibrated data are reported. The directional hot-wire response was described by an 
effective cooling velocity, which was then used for the data reduction. The errors in 
the measured Reynolds stresses evaluated with an empirical cooling law as opposed 
to the actual one were estimated analytically from the governing equations and were 
confirmed by corresponding recalculations from the same set of measurements. 
Additionally, the validity of the conventional linearized method for evaluating the 
Reynolds stress tensor from the root-expanded equation for the cooling velocity was 
checked for increasing turbulence levels. In  the test measurements all triple velocity 
correlations, which are usually neglected compared with second-order ones, were 
measured and taken into account in the data reduction. 

1. Introduction 
Most present prediction methods for turbulent boundary-layer flows use the time- 

averaged Reynolds equations. The unknown Reynolds stresses have to be described 
by an empirical turbulence model adapted to  the type of flow Considered. Refinements 
of present models in order to develop computational methods for complex flow fields 
including for example strong adverse pressure gradients or separated and reattached 
regions are achieved mainly by measuring the mean and fluctuating flow field of 
specially designed experiments (Marvin 1977). Thus the ‘fact gap’ (Bradshaw 1972) 
between computational capacity and experiments suitable to guide flow-field pre- 
dictions can be decreased. 

The development of numerical methods for calculating three-dimensional turbulent 
boundary layers has been advanced intensively in recent years, in order, for example, 
to support the design of swept wings with low aspect ratio. However, the turbulence 
structure of three-dimensional flows is still not well understood. Experiments in 
incompressible boundary layers with pressure-driven secondary flow, for example 
those of van den Berg & Elsenaar (1972) and Elsenaar & Boelsma (1974), Dechow 
(1977), and Johnston (1970) indicated that a simple application of turbulence models 
developed for two-dimensional flows is generally not valid. As Rotta (1977) pointed 
out, the anisotropy of closure assumptions has to be taken into account in prediction 

6 FLM 119 



156 U .  R. Miiller 

methods. This was confirmed by the calculations of Krause (1974,1975) and Kordulla, 
when compared to the in finite-swept-wing experiment of van den Berg, Elsenaar and 
Boelsma; the predictions of the three-dimensional boundary layer were sensitive to 
the assumed closure of the crosswise momentum equation. 

Since only a few experiments in three-dimensional turbulent boundary layers are 
suitable for the verification and refinement of turbulence models for these flows, 
a pressure-driven incompressible turbulent boundary layer over a plane wall developing 
from two-dimensional to fully three-dimensional conditions was investigated. As 
reported in I profiles of the mean velocities and of the Reynolds stress tensor as well as 
the wall shear stresses and the pressure distribution were measured. By means of a 
probe support similar to that proposed by Johnston (1970) an X-hot-wire probe was 
aligned with the local yaw direction and then rotated around the longitudinal axis in 
order to measure all Reynolds stresses locally. In preliminary experiments this method 
was checked by repeated measurements of profiles of the Reynolds stress tensor using 
three nominally identical X-wire probes. With each probe orientated a t  four angular 
positions, a total of 48 r.m.s. measurements was obtained per measuring point. 
Redundant evaluations of the Reynolds stress tensor from different sets of measure- 
ments, however, indicated large scatter, especially for the important crosswise shear 
stress. While keeping typical error sources of the hot-wire measurements small, we 
found that the correct description of the hot-wire response to the flow direction was 
crucial to the accuracy of the results. The cooling of the hot wires used could not be 
described by a single cooling law, so each wire had to be calibrated individually with 
respect to the magnitude and direction of the flow vector. By incorporating the cali- 
brated data in the evaluation of the Reynolds stresses the accuracy of the results was 
improved. 

Since in the flow field of I the local tubulence levels increased appreciably with 
decreasing distance from the separation line, we expected limitations on the use of the 
conventional linearized method for evaluating the Reynolds stress tensor. The 
applicability of this method, which neglects triple-order velocity correlations com- 
pared with second-order ones, was checked in the vicinity of separation with turbu- 
lence levels up to 35 %. By including all measured triple velocity correlations in the 
data reduction and neglecting the fourth-order terms, the calculated Reynolds stresses 
could be compared with those evaluated conventionally. 

2. Data-reduction method for low turbulence levels 
2.1. Linearized hot-wire response equations 

In  the boundary-layer experiment described in I, the yaw direction and magnitude 
of the local, resultant mean-velocity vector were determined using a single normal hot 
wire orientated parallel to the wall; the yaw direction defined the measuring co- 
ordinate system (x,, ym, 2,) in figure 1.  Then an X-hot-wire probe was placed in the 
(xm, y,)-plane similar to the single-wire probe sketched in the figure, and the mean- 
velocity component V, normal to the wail was determined; although the accuracy of 
this measurement was known to be limited by mean velocity gradients in the near-wall 
region. A sufficient number of measurements for evaluating all components of the 
local Reynolds stress tensor was obtained by rotating the X-probe with prescribed 
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FIGURE 1. Transformation of streamline co-ordinate system (xm, Y,,~, zm) 
onto hot-wire fixed system (Nl, T, N . ) .  

intervals around the longitudinal axis, thus placing the wires a t  different orientations 
relative to the velocity field (e.g. Hinze 1975; Champagne, Sleicher & Wehrmann 
1967; Elsenaar & Boelsma 1974; Dechow 1977; Vagt 1979). The corresponding 
equations used in I for evaluating the mean and fluctuating velocities from the hot- 
wire measurements will be briefly derived in this section. 

The cooling of an ideal hot wire of infinite length in a three-dimensional Aow depends 
on the velocity components normal to the wire axis (' cosine law '). In  practice, how- 
ever, the response to the flow direction is increasingly affected with decreasing ratio of 
wire length to diameter, for example, by heat conduction and aerodynamic disturb- 
ances caused by the prongs. Also manufacturing imperfections like wire slack yield 
deviations from an ideal cooling law. For the present investigation Jorgensen's (1971) 
cooling law describing the hot-wire response in a three-dimensional laminar flow by 
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means of an effective cooling velocity was assumed to be valid instantaneously in a 
turbulent flow, so that 

The output voltage E of an analogue linearizer circuit was related to the cooling 
velocity U, by the calibration constant X. The mean-velocity components gKl and 
uT were perpendicular and tangential to the wire in the plane of the prongs, aN2 was 
perpendicular to both. The fluctuations of volta.ge and each velocity component are 
denoted by lower-case letters. The evaluation of the directional sensitivities k and h 
will be discussed later, they are treated as known constants in this section. 

The mean and fluctuating velocities in (1) were described in terms of the velocities 
Urn + u,, 7, + v,, w, of the measuring co-ordinate system by transforming the latter 
ones onto the hot-wire-fixed co-ordinate system (Nl,  T, N2) using the intermediate 
systems (xl, yl, zl) and ( x 2 ,  yz, z z ) ,  as illustrated in figure 1.  The cooling velocity Uc was 
obtained as 

uc = u c ( g m ,  VmT urn, om, wm, €09 Y, $, k) h ) ,  (2) 

where so was the angle between the probe axis and the wall, and y was the angle 
between the hot-wire and the probe axis. The roll angle @ and the corresponding 
indication of the measuring positions are definedin figure 1. With subscript n indicating 
the roll angle, and with the other parameters prescribed, the relation between output 
voltage and velocities becomes 

E:/S2 = U2 cn = Fi[(uiq)rn~ +fm[(gii, ~ i ) m ~ +  gn[(uiuj)rnl. (3) 

F2 and g contain all double velocity correlations of mean and fluctuating velocity 
components respectively; f includes the linear fluctuation terms. With the definitions 

I A = cos so sin y + sin so sin $ cosy, 

I B = sin co sin y - cos eo sin @ cos y ,  

C = cos co cos y - sin so sin @ sin y ,  
(4) 

D = sins, cosy+coseosin$siny J 

3' = uL(A2 + k2C2 + h2sin2eo cos2 @) + vL(B2 + k2D2 + h2 cos2co cos2@) 

F2, f and g are 

_ _  + ZUmVm(AB + k2CD - h2 sin so cos so cos2 $), (5) 

f = um(2gm(A2+ k2C2+ h2sin2eo cos2@) 

+ 2vm(AB + k2CD - h2 sin so cos so cos2 @)) 

+ ~ , ( P ~ ~ ( A B + k ~ C D - - h 2 s i n e ,  cosso cos2$) 

+ 2rm(B2 + k2D2 + h2 cos2 so cos2 $)) 

+ w,(2Vm( - A cos $ cos y + k2C cos $ sin y + h2 sin eo cos $ sin @) 

+ Zvm( - B cos @ cosy + k2D cos @ sin y - h2 cos so cos @ sin 9))) (6) 
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+ w~(cos2  $ cos2 y + k2 cos2 $ sin2 y + h2 sin2 $) 

+ urnom 2(AB + k2CD - h2 sin .so cos e0 cos2 $) 

+urnwm2( - A cos $ cosy + k2C cos $ sin y + h2sin .so cos @ sin$) 

+ v,w, 2( - B cos $ cos y + k2D cos $ sin y - h2 cos eo cos $ sin $). (7) 

The final equations were obtained after separating the mean and fluctuating parts of 
the cooling velocity by means of a binomial expansion of (3) : 

The mean square of the sum and difference of two signals has to be measured by means 
of an X-wire-probe with wires in positions n and n + 4 respectively. For measurements 
in flows with low turbulence intensity (about 10 yo) all fluctuation terms in (8) and all 
terms higher than second order in (9) and (10) are neglected and the final equations for 
determining the components of the mean flow vector and of the Reynolds st,ress tensor 
are retained. 

I n  I 16 r.m.s. measurements according to (9) and (10) were carried out at four 
angular positions a t  each measuring point. The spatial resolution and the accuracy of 
the measurements as well as the influence of non-constant directional hot-wire 
sensitivities k and h were checked by evaluating the Reynolds stress tensor with three 
different sets of equations. The leading terms were obtained after simplifying (4)-( 10) 
by setting E = e0 = k = 0, h = 1 and y = 45'; the simplified equations are summarized 
in table 1. The results of I were calculated by inverting the complete 6 x 6 matrices and 
arithmetically averaging the solutions. 

2.2. Directional hot-wire sensitivities 

I n  I the Reynolds stresses and the normal velocity vm were measured with DISA 
miniature X-hot-wire probes 55PG1. They were chosen in order to measure as close 
to the wall as possible for resolving the peaks in the profiles of the Reynolds stresses. 
We used unplated, platinum-coated tungsten wires with d = 5,um arid 1 = 1.2mm 
throughout the measurements. Since the knowledge of each hot wire's directional 
response according to (1) was required for the data reduction, a calibration device was 
developed which allowed an arbitrary, accurate positioning of a hot wire relative to the 
velocity vector of a TSI calibrator (turbulence level Tu N 0.002). The two-dimensional 
case is sketched schematically in figure 2 and will be discussed first. 
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System (c) 

21,2u, = fr[.,w,(a) + ~ , w , ( b ) l ,  U F m  = firu,w,(a) +u ,w , (b ) l .  

TABLE 1. Sets of equations used for evaluating the Reynolds stress tensor; 
simplifications: E = c,, = k = 0, h = 1 and y = 45" 

By varying the magnitude i& of the resultant velocity vector as well as the angle 
a between this vector and the hot-wire normal we found that generally the hot-wire 
coolings did not obey the empirical relationships suggested in the literature (e.g. 
Champagne et al. 1967; Friehe & Schwarz 1968; Bruun 1975). Additionally, as discussed 
by Vagt (1979), different results for the tangential sensitivity k of (1) were evaluated, 
for example by Champagne et ul. (1967), Jorgensen (1971), Bruun (1971 a), Kjellstrom 
& Hedberg (1970), Irwin (1971) and Horvatin (1970), depending on the type of probe, 
the wire Reynolds number and the probe orientation to the flow. Therefore i t  seemed 
most convenient to use the definition of an effective cooling velocity according to 
(1) and allow for variable sensitivities. This in turn required an individual calibration 
of each wire used for the measurements of I. 

First the calibrat,ion constant S was determined with a = 0: 

E(a = O)/S = Q. 

Then a t  angles a $: 0 the tangential sensitivity k was evaluated from 

One example of the results is given by Miiller & Krause (1979), another one for 
10" < a < 85" and 12m/s 6 OR < 24m/s is shown in figure 3. The calibrations with 
step sizes of Am = 5" proved to  be sufficient within the attainable accuracy of the 
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probe 

FIGURE 2. Schematic of calibrating the tangential sensitivity k with respect to oT. 

Reynolds stress measurements of I. Generally the calibrated sensitivities decreased 
with increasing a for a < B O O ,  where they had minima and depended on the magnitude 
of the velocity more strongly than a t  smaller angles. For a 2 25" the tangential 
sensitivity increased rapidly, because (12) was not defined for a + 0. For the experi- 
ments of I the hot wires had to be calibrated a t  least in the range 35" 7 a 7 55" indicated 
by broken lines in figure 3. The velocity range 12 m/s < < 32 m/s was covered by 
eight calibrations a t  each given a, for clarity only four of them are shown in the figure. 

The calibrated tangential sensitivities were constant throughout the average life- 
time of 20 h of a hot wire. In  repeated calibrations with intervals up to 40 h k scattered 
up to & 10 yo, but because of the difficulties in the calibrations themselves as discussed 
in 9 2.3.1 these differences could not be attributed to ageing of the wires. 

For measurements in three-dimensional A ows relative to  the hot-wire probe, the 
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FIGURE 3. Example of calibrated tangential sensitivity k of a hot wire. 
V, ux = 24.0m/s; +, 17.9m/s; x ,  13.3m/s; 0 ,  12.0m/s. 

velocity UN2 perpendicular to the plane of the prongs has to be taken into account by 
a sensitivity h in ( 1 ) .  For the normal-wire probe DISA 55F31 Jorgensen's (1971) 
calibrations yielded h 21 1.1.  In  the present calibration of the slanted hot wires used 
(figure 4) we first aligned the probe axis with the prescribed total velocity vector 
yielding gN2 = 0, and measured the voltage E(gR). Then the plane of the prongs was 
inclined by an angle CT with respect to the resultant velocity vector which was increased 
to Dg = uR/c0s (T in order to retain the cooling by uR measured before. The sensitivity h 
was calculated from 

h =  
8 2  i7: sin2 (T 

The measured results were larger than unity for all hot wires investigated for the 
range 0 < (T < 10". But because of scatter, especially for small CT, the data did not show 
any dependence on angle or Reynolds number and were approximated by an average 
constant value of h = 1.2. 

The calibrated hot-wire sensitivities had to be taken into account in evaluating the 
mean velocities and Reynolds stresses from the measurement,s. The mean velocity 
rm normal to the wall was determined by means of the angle E" = e-co between the 
resultant velocity vector and the probe axis (figure l), e = -arctan (vm/um). With ( 5 )  
and (8) and the measured mean voltages Eig and E ,  E" was calculated from 
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t 
Calibrator 

FIGURE 4. Schematic of calibrating the sensitivity h with respect to Qz. 

Only the solution yielding 121 < 45" made sense in this context. The wires A and B in 
positions 3 and 7 were inclined against the probe axis a t  angles yA and ys, respectively. 
Since the corresponding tangential sensitivities k ,  and k ,  in (14) were dependent on E" 
and on the mean velocity, a previously measured value of the resultant velocity vector 
was used to prescribe the dependence of k on aR by interpolation between the calibrated 
data points. Then E" was approximated by the result of a neighbouring measuring point, 
the corresponding k was interpolated on the curve k(U, = const) and 2 was calculated 
according to (14). The procedure was repeated several times with a computer; on the 
average the results did not change after three iterations. The accuracy of measuring E" 
in this way was checked by means of the calibration device and yielded scatters within 
rt 0.5". After measuring E" the magnitude of the total velocity was evaluated from 
either mean voltage E3 or E,. These results were up to 2 yo smaller than those obtained 
using single hot wires. 

For evaluating the Reynolds stresses from the r.m.s. measurements, the directional 
sensitivities were prescribed according to the local mean flow vector. At each angular 
hot-wire position (figure 1) the mean-velocity components uxl and uT were calculated, 
and k was interpolated between the calibration points; the cross-flow normal to the 
plane of the prongs was taken into account with a constant sensitivity h = 1.2. These 
sensitivities were inserted in (9) and ( lo) ,  and the local Reynolds stress tensor was 
calculated according to the equations of table I. 

2.3. Accuracy of measured Reynolds stresses 

2.3.1. Effect of inaccuracies in calihruting the tungentiul sensitivity k.  During the 
calibration of the directional sensitivities great care was necessary to avoid misinter- 
pretation of the hot-wire voltages. The effect of small errors in the measured cooling 
velocity and in the hot-wire angle y on the tangential sensitivities v7as analysed from 
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(12) under the assumption that the hot-wire probe was aligned with the mean-velocity 
vector, i.e. E = E,, = 0 and y = 90" -a .  The influence of deviations from the actual wire 
angle yr and from the correct cooling velocity (GJf_was estimated by inserting the 
perturbation equations y = yr+ A y  and UJU, = (UC/u& -k A(U,/U,) into (12) and 
root-expanding this relation 

- -  - -  

L 2  cos" yr 

For an  actually calibrated tangential sensitivity k, = 0.257 together with yr = 45" 
and u,/uR = 0.73 the relative errors in k were 

- -  

k/k,- 1 = i 0.24 for Ay = k l", A(uc/TJR) = 0, 

k/k,- 1 = k 0-08 for A(Uc/UR) = k 0.01, A y  = 0. 
- -  

- -  
The influence of the errors A(Uc/UR) on the tangential sensitivities was kept small. 

Before and after the eight calibrations with different velocities for one fixed yaw angle 
a, the calibration curve (1 1) was checked; deviations due to temperature drift were 
smaller than 0.5 yo, and will be neglected in the following analysis. 

Prom the definition of the cooling velocity gc = uR(sin2 y + k2 cos2 y)* the pertur- 
bations in y and the corresponding ones in k had no influence on the measured mean 
velocities. There were, however, effects on the measured Reynolds stresses. The relative 
errors (r.e. (z) = x/x,- 1)  were estimated from the simplified equations (9) and (10) 
equivalent to those of table 1 but including y = yr+Ay  and the corresponding 
k2(y) = k;(y,) + Ak2(Ay) for both wires A and B. While terms proportional to AyA and 
Ayo were negligible, those containing AE2,(AyA) and Akk(Aya) were significant. For all 
stresses of equation system ( a )  and for u i i ,  and v T w ,  of system ( b )  the relative errors 
were estimated as - 

r.e. (u:) = 0, 

~ _ _ _  
r.e. (u,v,,u,w,) = $D, 

with D = Ak; + Akg. (19) 

If for example the actual tangential sensitivities for two wires were 0.25 and 0- 15, and 
both errors in Ay were assumed to be - 2", the error D would be 0.1, The corresponding 
errors in the Reynolds stress tensor according to  (16)-(18) were confirmed by recalcu- 
lating the results of station E5 of I from the same set of measurements with prescribed 
errors of Ay = 2" for both wires. I n  figure 5 the recalculated data are compared with 
the actual ones. As indicated by the analysis and the comparison calculations, for the 
present investigation we could not rely on assumed or effective hot-wire angles, but 
had to measure the geometrical inclinations instead. Our measurements by means ofa  
microscope and the calibration device scattered within rt 0.5" yielding errors in the 
Reynolds stresses below D 2: T 0.04. 

2.3.2. Effect of empirical values for the tangential sensitivity k .  In  many experiments 
empirical values for the tangential sensitivity k are accepted, while the hot-wire angle 
is also prescribed. Generally these assumptions are not compatible with the definition 
(1) of the cooling velocity, and a relative error of approximately +Ak2 is introduced in 
the measured mean velocity. Thereby the denominators in (9) and (10) for the Reynolds 
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Y (mm) Y (mm) 

FIGURE 5 .  Effect of errors in tangential sensitivity k due to errors in hot-wire angle yr on measured 
Reynolds stresses; station E5. -.-.-, k ( y , - 2 " ) ;  --, k(y , ) ;  ---, k(y,+2").  

stresses are affected. For this case the relative errors in the measured velocity cor- 
relations were estimated in the same way outlined above, but including fixed hot-wire 
angles y = yr = 45". With 0 as defined in (19) we obtained 

- 
r.e. (uk) = -0.50, 

r.e. (v:, wl, urn~,) = 1.50, 

r.e. (u,~,, urn~,) = 0.50.  
-- 

With these equztions the effect of using a cooling law with the tangential sensitivity k 
instead of one with k, can be studied, Comparing the cooling law of Webster (1962) and 
Champagne et at. (1967) with k = 0.2 = constant with the cosine law yields D = 0.08. 
The corresponding deviations in the Reynolds stresses are identical with the non- 
normalized ones of Champagne et al.; all relative errors are smaller by 90 compared 
with the Reynolds stresses normalized with the cooling velocity. 

The deviations in the Reynolds stresses evaluated with the present method com- 
pared with those calculated with k = 0.2 are small for the results of station E5 of I, 
as can be seen from figure 6, because in the calibrations, as in those of figure 3, Ale: 
was approximately equal to - Akg ,  so that the errors cancelled out. However, when 
this symmetry with respect to the sensitivity of Champagne et nl. was not present owing 
to probe or Reynolds-number effects, systematic deviations of more than 10 yo arose 
in the calculated Reynolds stresses. 

2.3.3. Eflect of the cross-$ow sensitivity h. Additional to k the sensitivity h of the 
velocity gN2 normal to the plane of the hot-wire prongs was taken into account in the 
data reduction in I. The effect of using the calibrated value h = 1.2. instead of the ideal 
one h = 1 on the measured Reynolds stresses was checked for those of station E5 of I 
as shown in figure 6. While all other correlations were insensitive to this change, the 
crosswise shear stress vmwm increased up to 15 yo. The influence of the sensitivity h on 
this correIstion mas estimated from equations corresponding to those of equation 
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Y (mm) Y (mm)  

FIGURE 6. Effect of cooling law on measured Reynolds stresses; station E5. -.- a-, k = 0-2, h = I 
(Champagne et al. 1967); -- , k = k(VR,a), h = 1 ;  --- , k = k(i&, a) ,  h = 1.2 (actual 
calibrations). 

systems ( a )  and ( b )  of table 1; the functions P ,  f and g according to (5)-(7) were 
simplified by e = 0,  y = 45" and k = 0.2. Inserting h2 = ht + Ah2 in the equations and 
retaining only the leading terms did not change the results for v i , ( b )  because the 
errors due to Ah2 cancelled out. The actual calculations of I deviated slightly from this 
estimation, the shear stress increased by a few per cent. The accuracy of the correlation 
vrnwm(a), however, was very sensitive to using h = I instead of h, = 1.2, because all 
deviations of the zI,w, terms as well as those of the u,W, terms accumulated. At the 
measuring station under consideration the relative errors were estimated as 

(23) r.e. (v,w,(a)) = Ah2(04 - 0-35umw,/vrnw,(a)). 

With the assumption - u r n ~ ~ ,  B wmw,(a) the relative errors were larger than 20 %. 
Since the results for vU,Wm reported in I were averaged values $[wCrn(a) + v G r n ( b ) ]  
the data calculated with h = 1 were expected to be underestimated at least by 
10 yo. This estimation was confirmed by the results of recalculations displayed in 
figure 6. 

The agreement between redundant measurements of the same Reynolds stress was 
improved considerably by taking into account the calibrated hot-wire response to 
magnitude and direction of the mean-flow vector. As inferred from the unavoidable 
scatter of the results, the relative errors were about 10 yo, and those of u i i ,  and 
v,w, were about 10 yo of the local ail,. 

-- 

- -  

3. A method of data reduction for turbulence levels up to 40 yo 
For measuring the Reynolds stress tensor in a flow with local turbulence levels 

Tu = [Q(u2 + w 2  + w2)]4/u, 7 0.1 the third-order velocity correlations in the root- 
expanded equations (9) and (10) cannot be neglected in general, Durst (1 971) and Rodi 
(1975) proposed using the exact time-averaged equation (3), but in practice it is 
difficult to apply this method for turbulence levels below - 40 %, while a t  higher 

_ _ _  
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turbulence levels reverse flow will probably become significant. Therefore several 
authors included velocity correlations higher than second order in the root-expanded 
cooling velocity (e.g. Heskestad 1965; Champagne et al. 1967; Vagt 1972, 1979; 
Bruun 1971 b, 1972). Vagt (1972) and Heskestad (1965) transformed the third- and 
fourth-order correlations into second-order ones by assuming certain structures of 
the velocity field, for example quasi-Gaussian probability distributions. Generally, 
however, the magnitude and sign of the higher-order moments depend on the flow 
field considered. Therefore in the present investigation all triple velocity correlations 
were evaluated from measurements of 

The calibrations of the directional sensitivities of each hot wire were taken into account 
in the functions F and f ((5) and (6)).  After neglecting fourth-order correlations, 
those of third order were calculated and used to describe the corresponding terms in 
(9) and (lo), from which the corrected Reynolds stresses were evaluated. The set 
(26) of equations used is summarized in table 2 after applying the simplifications 
8 = E,, = k = 0, h = 1, y = 45" in order to show the leading terms. 

The method proposed was applied for measuring profiles of the mean velocities, 
Reynolds stresses and triple velocity correlations in a flow comparable with that of 
I, but with larger adverse pressure gradients and high turbulence levels in t,he vicinity 

(Z - 2) /s2 = 2 u , v ,  + 2v,ygg, (26-1) 
-- - (2 - e:) 1st 

(2 - 3 + g - ig)/S2 

= 22c,w, + 2 4  wm/ug, 

= 2v,w, - 4u, v, w, f u,, 

(26-2 a)  

( 2 6  -3 a) 

- -  - - -  
(ei - e: - e: + e:)/s2 = 2 u G m / T  - T(v: - Wi)/U,,  (26-2  b)  

- 
~ _ _ _  

= 4v,wm, (26-3b)  

= 2 4  + 4Um w:/q, (26-4) 
= 2 4 ,  (26-5) 

( e , P Z  - - - = 2w;, (26-6) 

(et + e i  - g(e: + ei + eg + e;))/S3 (26-7) 
(3 + 2) is3 = 3 g m / T + Z / T ,  (26-8) 
(Z + 3) /s3 = 3 a / T  + Z I T ,  (26-9) 
(3-Z)/S3 = Z I T  + 3 c / T ,  (26-10) 

= z / T  + 3 K / T ,  (26-11) 
( - 1 8 3  = )Tu:, (26-1 2 )  

= 2 2 ,  + 6=, (26-13) 
= 2v; + 671, w:, (26- 14) 
= 2 T v g ,  (26-15) 

(e5 - el) 3/s3 = 2TU;, (26-1 6) 

- -  ((ez-e,)2- (er-ed2) /S2  
( e , / S Z  

(e3 - e,) z/s2 
- 
- 

= 3 u i i / T ,  

- -  
- (ez - e:)/S3 

~ _ _ _  
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TABLE 2 .  Set of equations used for evaluating the Reynolds stress tensor and the triple 
velocity correlations; T = ,/2; simplifications: E = e0 = L = 0, h = 1,  y = 45" 
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of separation (figures 7-9). The mean-velocity components 0 and w o f  figure 7 are 
defined in a Cartesian co-ordinate system, the x-axis of which is approximately 
aligned with the wind-tunnel centre line; the vertical velocity v is identical with vm. 
At the measuring station chosen the turbulence levels increased from Tu N 0.2 a t  
y = 25mm to Tu N 0.35 a t  y = 4mm. The Reynolds stresses evaluated according to 
the equation system of table 2 are compared in figure 8 with those calculated from the 
same set of data using the conventional linearized method. Though the accuracy of the 
third-order moments measured with analogue equipment was limited by errors up to 
- + 10 yo in 3 and (en en+4)3, the magnitude of the corrections is obvious from the 
comparison. In  these calculations the time-averaged cooling velocity measured with 
a single normal-wire probe was iteratively corrected by including the second-order 
correlations according to (8) : 

_ _  
The results of figures 8 and 9 show that the corrected u&/ U 2  correlation was reduced 
up to 14 % by the term 2(umw&/U3,) / (Ug/Um) according to (26-4). The shear stress 
FW, as estimated from (26-3a) increased about 15 % a t  y = 7 mm due to a positive 
correlation (umvm wm/ U”,/(U,/Um); the influence of this term increased rapidly with 
decreasing resultant mean velocity ag. The calculation of w F W m  according to (26-3b), 
however, was approximately independent of the triple velocity correlations, so the 
resultant deviations indicated in figure 8 were about half the corrections corresponding 

___-  - -  
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FIGURE 8. Evaluation of Reynolds stresses with conventional method (A) 
and that proposed here (0) .  station E3, Re = 1.5 x lo6, c, = 0.59. 

to (26-3a) .  The Reynolds shear stress u,zI, evaluated with the present method was 
dependent on ( v , w ~ / U ~ ) , l ( U g / U m ) .  In  the inner region of the boundary layer the 
results were smaller than those calculated with the conventional method; in the outer 
layer they were slightly larger. 

The results of the test measurements (figure 8) indicated that for the flow field 
investigated the triple correlations had a non-negligible effect on the calculated 
Reynolds stresses for y 2 25mm with T u  > 0.2; for y > 25mm with Tu < 0.2 the 
third-order terms are negligible. Since the highest turbulence level encountered in 
I was 23 yo, the use of the conventional linearized method for evaluating the Reynolds 
stresses was justified. 

- -  - -  

4. Concluding remarks 
I n  the boundary-layer experiment described in I profiles of the Reynolds stress 

tensor were measured with inclined hot-wire probes, which were aligned with the 
local yaw direction and were rotated around the probe axis. We used the DISA 
miniature X-wire probe 55P6l and platinum-tungsten wires with d = 5pm and 
1 = 1.2 mm. Preliminary investigations revealed large scatter up to 40 %, especially 
for the cross-flow shear stress Wm, when carrying out repeated measurements 
with several probes of the same type. We found that the directional response of 
the hot wires could not be described by a single empirical cooling law. Therefore an 
effective cooling velocity defined in (1) was used to describe the wire cooling; the 
sensitivities tt and h with respect to the velocity components tangential to the wire or 
normal to the plane of the prongs, respectively, were calibrated individually for each 
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FIGURE 9. Measured triple velocity correlations. station E3, Re = 1.5 x lo*, cg = 0.59. 

hot wire used. In  general the tangential sensitivity k decreased with increasing angle 
between the velocity vector in the plane of the prongs and the wire normal, and was 
also dependent on the magnitude of the velocity. Therefore measurements of flow 
directions required an iterative evaluation procedure. The cross-flow sensitivity h cali- 
brated for the flow conditions encountered in I was approximately h = 1.2 = constant. 
For evaluating the Reynolds stresses from the measurements obtained at a prescribed 
angular position of the hot-wire probe, the tangential sensitivity k was interpolated 
between the calibrated data points using those components of the local mean-velocity 
vector lying in the plane of the hot-wire prongs, while the velocity component normal 
to that plane was taken into account with h = 1.2. 

The geometrical angle between a hot wire and the probe axis had to be measured 
accurately, because deviations from this value influenced the sensitivity Ic obtained 
from the calibrations and thus impaired the results for the Reynolds stresses. An 
error analysis indicated that inaccuracies of 0.5" encountered in our measurements 
of the wire angles yielded relative errors up to 12 yo for k and 4 yo for the Reynolds 
stresses. 

Additionally the effect of presuming the wire angles to  be known and simultaneously 
using an empirical value for the tangential sensitivity k different from the true one was 
anaiysed from the governing equations. The assessment by Champagne et al. (1967) of 
the relative errors in the measured Reynolds stresses evaluated with their value 
k = 0.2 = constant as opposed to the cosine law was reconfirmed. The comparison 
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between the present results, which were obtained by incorporating the calibrated tan- 
gential sensitivities, and those evaluated with k = 0.2 indicated vanishing differences, 
if the arithmetical average of the sensitivities of both hot wires of an X-probe was equal 
to the value found by Champagne et al. Likewise, whenever this symmetry was not 
present owing to probe or Reynolds-number effects, deviations above 10% in the 
calculated Reynolds stresses were encountered. The analytical error analysis was con- 
firmed by corresponding recalculations of the velocity correlations using the measure- 
ments of station E5 of I and applying different cooling laws in the data reduction. 

Since with the probe support used the longitudinal probe axis could not be aligned 
with the local pitch direction of the resultant velocity vector, a mean-velocity com- 
ponent normal to the plane of the wires was encountered during rotation of the probe. 
By taking into account this velocity and the corresponding fluctuation with the ideal 
sensitivity h = 1 instead of the calibrated value h = 1-2 all Reynolds stresses calculated 
from equation system ( b )  of table 1 remained unchanged because the errors cancelled 
out; the crosswise shear stress wm, however, determined from system (a)  was under- 
estimated by 20 yo a t  the measuring station considered. Generally the data reduction, 
including the calibrated directional sensitivities of each hot wire used, improved the 
accuracy of the Reynolds stresses obtained from repeated measurements to relative 
errors within ? 10 yo, the accuracy for the shear stresses urn w, and v G r n  was estimated 
as 10 yo of urnurn. 

In  I measurements in the vicinity of separation had to be excluded because the local 
turbulence levels increased with decreasing magnitudes of the mean velocity vectors. 
The upper limit for using the conventional linearized method for evaluating the 
Reynolds stress tensor from the root-expanded equation for the cooling velocity was 
estimated from tests by including all measured triple velocity correlations in the data 
reduction and comparing the calculated Reynolds stresses with those evaluated 
conventionally. The comparison showed that in the flow field investigated the linearized 
method would overestimate the correlations and IvrnI, while Iv,wmI calculated 
from (26-3a) would be too low when turbulence levels exceeded approximately 20 yo; 
the shear stress v m w m  determined from (26-36) was unaffected by triple velocity 
correlations. The results of the test measurements validated the conventional data 
reduction applied in I. 

The proposed method of including triple velocity correlations allows for measure- 
ments of Reynolds stresses with conventional accuracy in flows with turbulence levels 
up to about 40 yo, as long as instantaneous reverse flow is not significant. The data, 
however, should be advantageously measured by a triple-wire probe and be processed 
by a minicomputer so that the calculation of the resultant instantaneous velocity 
vector can incorporate the calibrated directional sensitivities of the hot wires used. 
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